Expedient Synthesis of (+)-Lycopalhine A

Benjamin M. Williams and Dirk Trauner

Angew. Chem. Int. Ed., 2016, 128, 2231-2234

Lycopodium alkaloids

Isolation/ Characterization

• Isolated in Guizhou Province, China from *Palhinhaea cernua* along with it's proposed biosynthetic precursor obscurinine

Palhinhaea cernua

Structure & absolute configuration determined through spectroscopic/computational methods

- Complex hexacyclic ring system containing
 - 1x6 + 2x5 membered carbocycles, 1x piperidine ring &
 1x hexahydropyrimidine ring on a highly substituted pyrrolidine core
 - Sensitive aminal functionality + strained aldol moiety
 - 9 stereogenic centres, 8 of which are contiguous
- Weak butyrylcholinesterase (BuChe) inhibitory activity
 - (31.4% at 50 μ M) compared to Tacrine (87.8% at 33 μ M, + control)

Chem. Commun., 2012, 48, 9038

Biosynthesis

- The biosynthesis of lycopodium alkaloids is not well established due to difficulty cultivating *lycopodium* species in the lab.
- Current insight is largely based on feeding experiments with radiolabeled precursors

Proposed Biosynthesis

• 2 total syntheses of (+)-Lycopalhine to date:

Fukuyama group – 7th March 2016

aminal

condensation

cyclopropanation

Michael

addition

'OH

biomimetic aldol

H

Ĥ

Ĥ

Ó

Fukuyama's Retrosynthesis

Fukuyama's Approach

Step McCabe @ Wipf Group

Page 8 of 15

Fukuyama's Approach

Page 9 of 15

Retrosynthesis

Angew. Chem. Int. Ed., 2016, 128, 2231-2234

Synthesis of Core Bicycle

5-endo-trig Mannich reaction

Entry ^[a]	Additives (equiv)	Solvent	<i>T</i> [°C]	Yield ^[b] [%]
1	Yb(OTf)₃ (1.0)	MeCN	0-RT	_
2	TiCl ₄ (2.0)/ Et ₃ N (4.0)	CH_2CI_2	-30-RT	_
3	K_2CO_3 (3.0)	MeOH	RT	_
4 ^[c]	Et ₃ N (3.0)	PhMe	RT-80	_
5	pyrrolidine (1.0)	DMF	RT	11
6	pyrrolidine (1.0)/ AcOH (1.0)	DMF	RT	10
7	D-proline (1.0)	DMF	RT	20
8	∟-proline (1.0)	DMF	RT	60
9 ^[c]	∟-proline (0.5)	DMF	RT	39
10	∟-phenylalanine (1.0)	MeCN	RT	30

[a] Reactions conducted under nitrogen atmosphere for 18-24 h. [b] Yield of isolated product. [c] Reaction performed without preformation of imine by treatment with Et₃N.

Completion of the Synthesis via a biomimetic aldol reaction

Deuterium Study

 Deuterium exchange between C₆/C₁₅ under basic conditions + the existence of both epimers in the experimental and isolated samples suggests equilibration with a thermodynamic preference for closed aldol product.

Conclusions

- First total synthesis of lycopalhine A
- First asymmetric synthesis utilizing a chiral pool approach

• Application of P-K/ organocatalytic Mannich approach to other lycopodium alkaloids

