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•  Isolated in Guizhou Province, China from Palhinhaea cernua along 
      with it’s proposed biosynthetic precursor obscurinine 
 
  
 
 
 
 
 
 
 
Structure & absolute configuration determined through spectroscopic/computational methods 
 
•  Complex hexacyclic ring system containing 

•  1x6 + 2x5 membered carbocycles, 1x piperidine ring &   
     1x hexahydropyrimidine ring on a highly substituted pyrrolidine core 
•  Sensitive aminal functionality +  strained aldol moiety 
•  9 stereogenic centres, 8 of which are contiguous 

 
•  Weak butyrylcholinesterase (BuChe) inhibitory activity  

•  (31.4% at 50 µM) compared to Tacrine (87.8% at 33 µM, + control ) 
 
 

Palhinhaea cernua 

Isolation/ Characterization 
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Biosynthesis 
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•  The biosynthesis of lycopodium alkaloids is not well established due to difficulty cultivating lycopodium 
species in the lab. 

 
•  Current insight is largely based on  feeding experiments with radiolabeled precursors 
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Proposed Biosynthesis 
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•  Trauner group – published 8th January 2016 •  Fukuyama group – 7th March 2016 

•  2 total syntheses of (+)-Lycopalhine to date: 
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Fukuyama’s Retrosynthesis 

Org. Lett., 2016, 18 (6),1494–1496  
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Fukuyama’s Approach 
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Fukuyama’s Approach 

9 

H

O

OPMP

NBoc
OHC

H

H

NNsMe

15 steps
KOH, MeOH

0 °C to rt, 98% H

O

OPMP

NBoc

H

H

NNsMe
HO

6 steps H

O

N

H

H

HO

NMe

H H

O

N

H

H

OH

NMe

H
+

lycopalhine A epi-lycopalhine A

DMP, pyridine
CH2Cl2, rt to 40 °C

H

O

O

OPMP

O

NHSO2Ar H

O

O

OPMP

NSO2Ar

O

Ar = C6H4-p-CF3

H

HO

O

OPMP

O

N
H

SO2Ar

synthesized on 
490 mg scale

H

80%

Step McCabe @ Wipf Group Page 9 of 15 6/19/2016



Retrosynthesis 
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Angew. Chem. Int. Ed., 2016, 128, 2231-2234 
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Synthesis of Core Bicycle 
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propargylic carbamate 11. This intermediate would ultimately
be derived from l-glutamic acid.

Our actual synthesis of lycopalhine A, guided by these
considerations, is presented in Scheme 2. To begin, dimethyl
ester 12, prepared from l-glutamic acid on a decagram scale
in a one-pot procedure (see the Supporting Information),[7]

was allylated with high anti diastereoselectivity in a procedure
described by Hanessian and co-workers.[8] Chemoselective
reduction of 13 by controlled addition of diisobutylaluminum
hydride (DIBAL) afforded lactol 14 as a 1:1 mixture of
diastereomers (C1). Alkynylation of 14 was complicated by
the epimerization of the neighboring amine stereocenter
under the basic conditions required to open the six-membered
lactol. Optimized conditions using Ohira–Bestmann reagent
15[9] and silyl protection of the resulting alcohol afforded
alkyne 11 and its C3 epimer as an inseparable 10:1 mixture.[10]

The ensuing Pauson–Khand reaction proceeded under ther-
mal conditions and afforded enone 10 with the desired C7
stereoselectivity, confirmed by nuclear Overhauser effect
(NOE) analysis, as a 10:1 mixture with the cyclized C3
epimer. The diastereoselectivity of related intramolecular
Pauson–Khand reactions in the context of Lycopodium
alkaloid synthesis has previously been explored by the
groups of Zard,[11] Takayama,[2d] and Mukai.[2i] The authors
propose that chair-like conformations of intermediate 16
translate to the desired configuration of the bicyclo-
[4.3.0]nonenone.[12] TMSCl-promoted conjugate addition of
butenylmagnesium bromide to the enone[13] and cleavage of
the resulting silyl enol ether with acetic acid afforded 17,
featuring the sole quaternary stereocenter of the molecule, as
a single diastereomer upon purification. The first six steps of

the synthesis were easily scalable and provided gram quanti-
ties of advanced intermediate 17. Global deprotection with
acetyl chloride in methanol then produced free aminoketone
8.

The intramolecular 5-endo-trig Mannich cyclization
proved to be a challenging transformation. Acidic conditions
resulted mainly in self-condensation of the aldehyde. How-
ever, mixing amine 8 and aldehyde 9 with triethylamine
followed by concentration under reduced pressure granted

Scheme 2. Total synthesis of lycopalhine A. a) LiHMDS, THF, ˇ78 88C, then allyl bromide; b) DIBAL (5.0 equiv), THF/PhMe, ˇ78 88C; c) dimethyl
(1-diazo-2-oxopropyl)phosphonate 15, K2CO3, MeOH, 0 88C!RT; d) TBSCl, imidazole, CH2Cl2, 0 88C!RT; e) Co2(CO)8, PhMe, 70 88C; f) 3-
butenylmagnesium bromide (4.5 equiv), CuBr·SMe2 (20 mol %), TMSCl, HMPA, THF, ˇ78 88C!ˇ30 88C, then AcOH, RT; g) AcCl (10 equiv),
MeOH, 45 88C; h) 9 (1.1 equiv), Et3N, CH2Cl2, then l-proline, DMF, RT; i) Boc2O, CH2Cl2, RT, 72 h; j) IBX, EtOAc, 80 88C; k) K2CO3, MeOH, RT,
l) OsO4, NaIO4, 2,6-lutidine, dioxane/H2O (3:1 v/v), RT, then TFA, CH2Cl2, 0 88C!RT. Boc = tert-butyloxycarbonyl, DIBAL= diisobutylaluminum
hydride, DMF=dimethylformamide, HMPA= hexamethylphosphoramide, IBX =2-iodoxybenzoic acid, LiHMDS = lithium bis(trimethylsilyl)amide,
TBS = tert-butyldimethylsilyl, TFA = trifluoroacetic acid, THF = tetrahydrofuran, TMS= trimethylsilyl.

Table 1: Conditions for the intramolecular Mannich cyclization.

Entry[a] Additives (equiv) Solvent T [88C] Yield[b] [%]

1 Yb(OTf)3 (1.0) MeCN 0–RT –
2 TiCl4 (2.0)/ Et3N (4.0) CH2Cl2 ˇ30–RT –
3 K2CO3 (3.0) MeOH RT –
4[c] Et3N (3.0) PhMe RT–80 –
5 pyrrolidine (1.0) DMF RT 11
6 pyrrolidine (1.0)/

AcOH (1.0)
DMF RT 10

7 d-proline (1.0) DMF RT 20
8 l-proline (1.0) DMF RT 60
9[c] l-proline (0.5) DMF RT 39
10 l-phenylalanine (1.0) MeCN RT 30

[a] Reactions conducted under nitrogen atmosphere for 18–24 h.
[b] Yield of isolated product. [c] Reaction performed without preforma-
tion of imine by treatment with Et3N.

Angewandte
ChemieZuschriften

2232 www.angewandte.de ⌫ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. 2016, 128, 2231 –2234

5-endo-trig Mannich reaction 
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Completion of the Synthesis via a biomimetic aldol reaction 
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Expedient Synthesis of (+)-Lycopalhine A – Supporting Information 

S41 
 

6. Deuterium exchange studies of lycopalhine A 
 

 

 
 
Figure S7. Deuterium exchange studies of lycopalhine A and epi-lycopalhine A  

 

 

Note: No additional deuterium exchange was observed after stirring for >24 h in MeOD with K2CO3 or after 
repeating the experiment over 3Å molecular sieves.   

b.   1 and epi-1 (pyridine-d5, 600 MHz) after stirring in MeOD with K2CO3 at rt for 2h 

a.   1 and epi-1 (pyridine-d5, 600 MHz) before treatment with MeOD/K2CO3 
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•  Deuterium exchange between C6/C15 under basic conditions + the existence of both 
      epimers in the experimental and isolated samples suggests equilibration with a 
      thermodynamic preference for closed aldol product.  
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Conclusions 

•  First total synthesis of lycopalhine A  
•  First asymmetric synthesis utilizing a chiral pool approach 

 
•  Key steps: 

 
 
 
 
 

•  Comparison of synthetic routes 

 
•  Application of P-K/ organocatalytic Mannich approach to other lycopodium alkaloids 

Synthesis Steps Overall Yield 
(mixture of C(16) 

epimers) 

Quantity  

Fukuyama 41 ~2% 13.0 mg 

Trauner 13 ~5.7% 4.0 mg  
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